
r
A D AO66 951 CAL I F ORNIA UN IV 5ERK EL. EY DEPT OF I~~CHANTC AL EPISIHEEPINS F/S 20/11

WI THERMAL EFFECTS IN THE THEORY Off ROOi.IU)
Ff1 79 A £ SAtIN. P N NASICI N0001N—?5— C—O1 ’e e

UNCLASSIFICO UCS/AM—79—t pit.c 
_

_  _ ____F

~~

r1..9W
E N D

O A T E
0

6 -79

Ia



‘ O L1~ ~ 28 fl~2.5
I . L imi~~~ ~~~~

~~~I36 —_

I . I 1

IIlH~111111.25 huh .4 HIll~
MICROCOPY RI3OLUTION tE ST CHART

NA I AJ NAt FIIJR~AIJ 01 I A NI~ARI, II A



DFFICE ~jF NAVAL RE~ EAR C}i

Contrect N000J)4-75-C-01148

Project NR O614_1~36

Report No. UCB/AM-79-2

On Thermal Effec ts in the Theory of Rods

by

A. E. Green and P. M, Naghd.i

L)
r~)

LL.. February 1979 /
C., I f ,

I i
~\ 

/ I \ S

/ ~~~~

Department of Mechanical ~~gineering 
-.

University of California

Berkeley, California

Approved for public release; distribution unlimited

79 04 05
________ 

a

’
~~~~~~~~~~~~~~~~~~~~~~~~ 

_;:
~i~1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



1’ ~~~~~~~~~ ~~~~
‘- —.—-- - —

$tGt~~~

~~~~ s’~~ °I’

~~ 
~~. ~~~~~~~ ___

~

~~~~~~~ • -—\

On Thermal Effects in the Theory of Rods

by

A. E. Green~ and P. M. Naghdi~

Abstract. This paper is concerned with thermomechanics of slender rods by a
• direct approach based on the theory of a Cosserat curve comprising a one-

dimensional curve and a pair of directors attached to every point of the curve.
In all previous developments of the thermo-mechanical theory of rods by direct

• approach , only one temperature field has been admitted. This allows for the
characterization of temperature changes along some reference curve , such as the
line of centroids of the (three-dimensional) rod-like body, but not for
temperature changes across the rod cross-section. A main purpose of the present
study is to incorporate the latter effect into the theory; and., in the context
of the theory of a Cosserat curve, this is achieved by a recent approach of
Green and Naghdi [1,2] to thermomechanics which provides a natural way of
introducing more than one temperature field at each material point of the
curve. Apart from fall discussion of thermomechanics of rods and therrno-
dynamical restrictions arising fr om the second law of thermodynamics for rods ,
attention is given to a discussion of symmetries (including material symmetries )
of rods which in a reference configuration are straight . The paper also con-
tains a detailed discussion of the linear theory of straight, elastic , ortho-
tropic rods , including the determination of the relevant constitutive coefficients.
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tDepartment of Mechanical ~~gineering, University of California , Berkeley,
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1. Introduction

This paper is concerned with thermomechanics of slender rods by a dir~2t

approach based on the theory of Cosserat (or directed) curves. A Cosserat

curve considered here is a body R comprising a one-dimensional curve (embedd.ed

in a Euclidean 3-space) and two directors (i.e., deformable vectors) attached

*to every point of the curve. The development of a complete theory of a Cos s erat

or a directed curve with two directors begins with a paper of Green and Laws

[3] whose derivation is carried out mainly from an appropriate energy equation ,

together with invariance requirements under superposed rigid body motions . A

related theory of a directed curve with three deformable directors at each

point of the curve, developed in the context of a purely mechanical theory and

with the use of a virtual wor k principle , is given by Cohen [Ii.]. A fur ther

development of the basic theory of a Cosserat curve along with certain general

developments regarding the nonlinear and linear constitutive equations for

elastic rods is contained in the more recent work of Green et al. [5]. For

clarity ’s sake, we may recall that the material curve of R can be identified

with a particular reference curve (often taken to be an interior curve) in

the three-dimensional rod-like body, e.g., the line of centroids of the cross-

section of the rod in some fixed reference configuration; the directors at

each point are regarded as representing the material filaments across the

reference curv e, i.e., in the cross-section of the rod.

Throughout the previous developments of the thermo-mechanical theory of

rods by direct approach , only one temperature field has been admitted and this

allows for the characterization of temperature changes along the reference

curve of the rod-like body . Some indication of how temperature changes across

The body C is taken to model some of the properties of a three-dimensional
4 body of rod-like character . When the directors are absent it reflects the

properties of a material curve appropriate for the construction of string
theory. 
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the reference curve of the rod-like body could be dealt with has been given in

the paper of Green and Naghd.t [6] by using three-dimensional approximations ,

but no direct thermo-mechanical theory of rods with m ore than one temper:i~u.re

has been discussed in the literature so far.

Although widespread use of the Clausius-Duhem inequalities has been made

in three, two and one-dimensional continuum thermodynamics, these inequalities

have been subject to the criticism that in some circumstances they do not

reflect adequately ideas associated with the Second Law of Thermodynamics.

Green and Naghdi [1] have developed a new approach to three-dimensional

continuum thermomechanics which is independent of any particular mathematical

expression of the second law and which imposes some restrictions on the

constitutive assumptions leading to a reduction of a number of independent

response functions (or functionals) in the set of constitutive assumptions.

In the present paper the same approach is used for a Cosserat curve and this

provides a natural way of introducing more than one temperature fie1d~ When

the directors are absent, the theory reduces to that of a material curve which

may be a material curve surrounded by another continuum.

Specifically, the contents of the paper are as follows. Section 2 contains

a concise summary of the various basic results of the purely mechanical theory

of a Cosserat curve with two directors. With reference to thermal properties,

in section 3 we admit at each material point of the curve of ft a number of

different one-dimensional temperatures and different one-dimensional entropies,

as well as related thermal fields ; and, in parallel with one-dimensional con-

servation laws for balances of mass and momenta , we postulate balances of

entropy. Next, we recall the balance of energy for the Cosserat curve ; and, •

following the recent approach of Green and Naghdi [1], after elimination of

tFor the purely mechanical theory, it is already clear how to extend the theory
with more than two directors. r

2.
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the assigned fields -- i.e., assigned force, assigned director forces and

external rates of supply of entropy -- regard the resulting equation as an
identity to be satisfied for all thermo-mechanical processes. In section I~,

we briefly discuss thermoelastic theory of a Cosserat curve on the basis of

• the new procedure in thermomechanics (see section 3) and also compare the

results with earlier developments (see Green and Laws [3], Green, Laws and

Wenner [5]) involving only a single temperature.

A new inequality representing the second law of thermodynamics for rods

based on the present authors ’ earlier work (Green and Naghdi [1,2]) , along with

restrictions on heat flux vectors and the specific internal energy are obtained

in sections 5 and 8, respectively, while sections 6 and 7 contain a discussion

of relevant results for rods obtained from the three-dimensional theory. The

last two sections, namely sections 9 and 10, are devoted to a discussion of

symmetries (including material symmetries) for rods and the linear thermo-

elastic theory of straight orthotropic rods. The developments in sections 9

and 10 supplement our earlier results by direct approach (Green et al. [7])

for thermoelastic rods in the presence of a single t emperature and previous

values for constitutive coefficients in the linear theory.

:~
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2. Summary of mechanical theory.

In this section we summarize the main kinematics and the basic equations

of the mechanical theory of rods based on the work of Green and Laws [3] in

the form developed by Green, Naghdi and Wenner [5] . A rod is a body ft

comprising a material curve with two deformable directors attached to every

point of the curve. Let the particles of the material curve of ft be identified

with a convected coordinate C and let the material curve in the present configura-

tion at time t he referred to as c. Let r be the position vector of c and

a (~~= 
1,2) the directors at r. A motion of the rod is then defined by~

r = r(C,t) , a = d (~ ,t) , [~~~~a3
] > 0 , (2.1)

where

8~3 
= a

3
(C,t) = (2.2)

is a vector tangent to the curve c and the directors d have the property that

they r emain unaltered in ma~~itude under superposed rigid body motions . The

velocity and director velocities are given by

v = (~~ t )  , w = 
~a(C~

t)  (2.3 )

wher e a superposed dot stands for material time derivative with respect to t

holding C fixed. In the refer ence configuration of ft which we take to be the

initial configuration, let the material curve of ft be referred to by C and

denote the initial position vector by R, the tangent vector to C by A and

the initial directors by D .  Then,

1•
The positive sign in (2.l)~ is taken for definiteness. Alternatively, it
will suffice to assume that [~~~~a~] ~ 0 with the understanding that in any
given motion the scalar triple product ~~~~~~~ is either >0 or <0.

— 
_ _
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= ~ (C) 
= r(C,0) = A

3
(C) = = a3( C , 0)

(2. i~)
D ~~D (c ) = a  (c , °)—a -~~ -~~~

Ue assum e that the kinetic energy of the rod per unit length of c is

give n by

T = ~~p(v .v+2y 0Bv .~~~+y~~w .~~~) , (2 .5)

where p = p (C,t) is the mass per unit length of c and the inertia coefficients

yOB =y BO, y3~ =y~~ are functions of C and independent of t. We define momenta

per unit length of c , corresponding to v and w , as

~v 
p (v÷y°Bw )  , ~~~~~~- =  p ( y ~~ v + y~

2Bw )  , (2.6)

respectively. In ( 2 . 5 ) ,  (2.6)  and throughout the paper, we use the summation

convention for repeated ~~eek indices over the values 1,2.

With referencc to the present configuration at time t, for each part of c

between C= a~ C= B we postulate the equations of mass conservation, momentum,
director momentum and moment of momentum as follows :

pds = 0 , (2.7)
a

~~~~ S
p(v +y 0B~~~)ds = ~~~~~~~~~~~ , (2.8)

~~~
$

B
p(yOav + y aBw )d$ - 

$
B

(pL~~~a;~~ a)ds ÷ [pa]~ , (2.9)

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , 2.10

where in the above irite~~a1s the limits are for values of ~ 
equal to a and B~

J 
ds = a~3

dC , a33 = a3 5
3 

(2.11)

5. 
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and wh er e we have used the notation

[f ( C , t ) ]~ = f ( B , t )  - f(a,t)

Also, in (2.8) to (2.10) n=n(C,t) is the contact force and P
a=P

a
(C,t) are

the contact director forces~ each a three-dimensional field in the present

configuration; f=f(C,t) is the assigned force and La= L a(C,t) are the

assigned director forces , each a three-dimensional vector field and per unit

mass of c; ,.Ta= ,.Ta(C,t) are the intrinsic director forces which make no con-

tribution to the supply of momentum and to the moment of momentum.

Under suitable smoothness assumptions the field equations corresponding

to (2 .7~ to (2.10 ) are

I I
pa~3 = x ( C)  = p0

A~3 
, (2.12)

/~~~~+x r = X(~r+y~B~~ ) , (2.13)

= ~
a + X(YoaV . + Y a~~~ ) , (2.11+)

~~~~~~~~~~~~~~~~~~~~~~~~~ , (2.15)

where

m = d  ~~~ , (2.16)
— - a —

~0 = p0 ( C ) is the reference density and A33 =A 3 
. A
3 

is the dual of (2.11)
2
.

1

• ~If ~~ have the same dimensions as r, then n and ~~ have the same dimensions.On ~!ie other hand, if the directors are chosen to be dimensionless , then
are usually called contact director couples .

6.
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3. Thermal properties. T’nermodynamical theory of rods.

In existing works on the theory of a Cosserat (or directed) curve , only

one temperature field is admitted and this is regarded as representing the

temperature-variation along some reference curve, such as the line of centroids

of the cross-section of the rod-like body. Also, the effect of the thermal

boundary conditions on the major surface of the rod-like bodyt is incorporated

into the theory through the external curve rate of supply of ~eat. The varia-

tions of the temperature across the rod cross-section have not been modelled so

far by a direct approach (within the scope of the theory of directed curves),

although some indications of how this could be effected are implicit in some

work on thermoelastic rods from the three-dimensional equations by the present

authors [6]. As already noted in §1, because of the new approach to thermo-

mechanics of continua introduced recently by Green and Naghdi [1], it is now

possible to account in a more general manner for the thermal properties of a

rod-like body in a direct formulation based on a Cosserat curve.

Thus, at each materia point of the material curve of ~t, we introduce

scalar fields e = e ( c , t )  and B cx~~~
9a1~~ ~~(C, t)  (N=l,...,K) representing

the effects of temperature variation in a rod-like body. The curve temperature 9,

which we require to be positive ( e > o ) ,  represents the absolute temperature in the
curve c of the rod-like body, while the scalars e account for temperatureai~~

.
variations across the cross-section of the rod; the scalars B are

assumed to be completely symmetric in the indices a1,~~ ,. ~~ which take the

values 1,2 only. Along with the temperatures B and B , we admit the -/• a
1~~~~

.. .aN
existence~ of external rates of supply of heat r = r ( C , t ) ,  r = r  ( C , t )
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

a1~~
.. .

~~~~~ 
alcz~

.. .
~~~~~ 

- I
.

tThe terminology of major surface refers to the surf ace specified by (6. 1+) in
~6.

~The external rates of supply of heat r and r a~~~ . .
~~~~~ 

include contributions

corresponding to heat fluxes on the major surfaces of the rod. They are not the

same as quantities defined with a similar notation in Green and Naghdi [6].

7.
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per unit mass of c and external rates of heat fluxes h, h and
= = 

a1~~~
. .

h , h over each end section of the rod. Also , we ass ume the ex ist enceala2 .
of internal heat fluxes h=h( ,t), h =h (c,t) along the rod at

.a
1~ a1a2

. .

each point C~ in the direction of increasing 
~
, per unit length per unit time.

Each function r , . . .  ,h is completely symmetric in the indices.a1~ •

a1,a2 , . . .  ,~~~~~~ . The total external rate of supply of heat per unit mass of c is

defined as

r+ Er , (3 .1)
a ,N a1a2 .. .aN

where the summation in (3.1 , is over all values of ~~~~~~~~~~~~~~~ end for all

N = l ,2,...,K. Similarly the total internal heat flux at the point C is defined
by

h+ Zh . (3 .2)  F
a ,N a1a2 . .

We now define the ratios of the heat supplies r and r to tempera-
ala2

...o
~

tures 9 and B , respectively , as s = s (C , t ) and s = s  (C , t )ala~
.. . aN a1c~~

.. .aN
and call these the external rates of supply of entropy per unit mass of c.

Further , we define the ratios of h,h to ~ and Ii , h toalce~
.. .o~ ~la2 .

respectively, as the external entropy fluxes k,k,1~a1a2
. . . a1,4 a1a

2
.. .

over the ends of the curve c. Similar ly , we define the ratios of

h and h to the temperatures B and 9 , respectively , as the
.~~~

internal entropy fluxes k=k (C ,t) and k k (C,t )  per unit
a1a2

. a1,~ a1a2
. . .

length of c , in the directicr of increasing c. The above definitions may

conveniently be suj mnarized bj

8.
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s = r / 9  , S = r  /8aN °i a2~~ Z

, k = h  /8
a1~ a1a2

. 
~ r a1 a2 .. . 

- - —

-

k = / e  , = h  ~8.aN ~la2. ~~~: 
a~a2

..
k = h / 8  , k = h  /8

•~~~ a~ cr~ . . .~~~
. a1a2

.. .aN

We require that the fields s , k . k , k
~~~~~~ .c~,4 a1a2

. ~~~~ a1~~~• . .a~ a1a2~ .

defi ned by (3.3) all tend to finite limits as 8 -~O for each N = l ,2 ,. . . ,K.
a-a2~~.

In addition to the thermal fields already introduced , at each point of the

material curve of ft in the present configuration , we assume the existence of

scalar fields 11= ’l(C,t) and 1
~ u 1 ( ~ ,t) called specific entropies

and internal rates of production of entropies 
~~
= 
~(C,t), ~ =

ala2..
(C,t) per unit mass of c, wher e T~ and ~ are completelya1c~~. . .cr~ a1a~ . . .~~~~~ a1a2 . .

symmetric in the indices 
~~~~~~~~ 

. ,c~~. The contributions of these internal rates

of production of entropies to the rate of production of heat is

9~~+ E 9 (3.1+)
a ,N a1cx2 • . .

~~~~~ 
a1a~ .. .aN

per unit mass.

We postulate balances of entropies for every material curve of ft occupying

*a part a~ C~ B in the present configuration and write

~~~S:
P
~~

ds = $~p s+~~ds Ik]B , (3 .5)  P

• 
~~~
j
:~~~~l~~~~~aN

ds = S  s ala2.. .a1~~~~ la2 .aN
)d5

~~~~~la2 . . .aN 
. (3.6)

Under suitable smoothness assumptions it follows from (3.5), (3.6), (2.ll)
~ 

and

(2.12) that

4 A motivation for postulating (3 .5) to (3.6) for balances of entropies is
/1~ 

provided by consideration of derivations frc~i three-dimensional equations
in *7.

_ _  
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Xli = X(s-I-~~) - 

~k/~C

(~~‘~
xli = X (s + ) -ala2. .  .~~~~~ 

ala2.. .aN ala2. ala2
. .

We nc~; introduce the first law of thermodynamics or the balance of ener~~r

for the Cosserat curve ft. This states that heat and mechanical energy are

~auivalent arid that together they are conserved for every part of the material

curve of ft. Thus, with reference to the present configuration, the balance of

energy may be stated in the form

~~~~~ ~~~ V+2Y
0aV .W ÷YaBW .~~ )]dS

= I p[r + Er + f •v + ~~~•w ]ds

~a a,N ala2~~
.aN — — — —a

+ [n .v+p a .w - h- Eh  ]B , (3 .8)
— -~ -

~~ —a

where e=e(C ,t) is the internal energy per unit mass of c and repeated indices

are summed over the va lues 1,2. With the help of (3.7), (2.12 ) to (2.16 ) and

under suitable smoothness assumptions , the field equation resulting from (3 .8)
is

E B
~aN a1c~~..

- x ( e ~÷ E e )
a, N a1~~. . . aN aj~ 2 . . . a1,4

+P-k ~9/~C -  E k 
~e / ~c 

= 0 ,

where the mechanical power P per unit mass of c is defined by

(3.10 )

Introducing the }{elmholtz free energy function 
~~
= s(c,t) per unit mass of c by

$ = e - B T ~- E B  , (3.11)
a, N a1~~

. aN a1a2.. aN

$ 10.
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the energy equation (3.9) may be written in the alternative form

- X ( $ + lie+ E l i  B )
a ,N a1a2 . .a~ a1a2 ..

- x ( e ~ + E B )
a , N a1a2 . aN aN

+ P - k  ~8/~C -  E k ~B /~C = 0 . (3.12 )
a, N a1~~. aN a1a2

. aN

For a given Cosserat curve having a reference density p0(C), the field

equations obtained from the integral form of the conservation laws involve a

set of ~ (K+i)(K+2)+12 functions. These consist of the deformation functions

r,d and the temperatures 8,9 , i.e.,—a a1a~.

(r,d ,B,B 3 , (3.13 )
— --a

the various mechanical and thermal fields , namelyt

- 

[fl ,P a,~~,k ,k 
.aN’~

’
~~~

al~~
. ~~~~~~~~~~~ •aN3 (3.11+)

and

3 . (3.15 )—-
We assume that the fields (3.11+) are specified by constitutive equations which

may depend on the variables (3.13), their space and time derivatives, as well

as the whole history of deformation and t~uperature. We then adopt the fol-

lowing procedure in utilizing the conservation laws

(1; The field equations are assumed to hold for arbitrary choice of the

functions (3.13) including, if required, an arbitrary choice of the space and

time derivatives of these functions ;

tThe density p is rIot included in (3.11+) and (3.15) since, given (3.13), p can
be calculated from (2.12).

~~or a more elaborate parallel discussion in the context of the three-dimensional
theory, see Green and Naghdi [1, *2].

11.
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(2) The fields (3.11+) are calculated from their respective constitutive

equations ;

(3) The values of the variables (3.15) can then be found from the balances

of momenta (2.:~~ and (2.11+) and balances of entr~~y (3.7);

(14) The equation (2.15) resulting from the balance of moment of rnnmentum ,

and the equaticn (3.12) resulting from the energy equation, will be regarded as

identities for every choice of (3.13). This will place restrictions on

constitutive ecuation~.

We note that the quantities 
~~ ,li,1) ,$ may be arbitrarya1~~

. - .aN a1a2
. •a.~

to the extent of additive functions f,f ,f,fa1a2
. 

~aN a1~~~-~
-ef - E 9 f , respectively, where f ,f are arbitrary

a, N a1a2
. . . a~,4 a1c~~.. aN a1a~

. aN
functions of the variables (3.13), their space and time derivatives and

functionals of their histories . The additive functions have the property

that they make no contribution to the differential equations for r,d ,9

9 and the boundary and initial conditions. They also make no contribu-

tion to the energy identity (3.12 ) and no contribution to the internal energy c.

We r emove this arbitrariness by setting

A A
~ = f  (C) ~1a2 aN a1a2 . .

~~~~~ (3.16)
, = 0

Then , the functions 
~~~ 

are determined uniquely and li~lia~~~ ~~ are

only arbitrary to the extent of additive functions of’ C~ 
independent of t. The

A A
functions f ,f in (3.16) can then be determined by specifying values

alcz~
.. ‘aN

for ll,li in some reference state.

So far nc mention has been made of restrictions on constitutive equations

which may arise from some form of second law of thermodynamics, usually

- -. 
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interpreted in terms of an “entropy inequality.” Before considering this and

in order t o gain some insight into the nature of our procedure described above

we study in the next section the relatively simple case of an elastic rod.

For later use , we record the expressions for the external work and the

external heat supplied to any part a~~C~~B of the cur ve of c during the time

interval t1~~t~~t2
. First, however , guided by the results of §14 we observe

that in the case of an elastic rod the response functions $‘li~’~ 
,c

depend only on the vectors a
3
,d 

~~ a/~ C and the temperatures 8,9 
‘aN 

and

are independent of their rates and the temperature gradients 
~~~~~

/~c. 
Such an elastic rod will be regarded as nondissipative in a

a1a2..
sens e that will be made precise later; and in conjunction with an expression

for the external mechanical work supplied to any part a~~C~~B of the curve c,

will be used as a basis for establishing in ~5 an inequality representing the

second law of thermodynamics for dissipative materials. Keeping this background

in mind, we assume that the constitutive response functions for € ,T~ include

also dependence on the set o variables ~~~~~~~~~~~~ .

/~C 
and their higher space and time derivatives and refer to this

ala2.. .~~~~~

set collectively as ~j . Further , let e ’,ll ’ denote the values of e ,li, respectively,

when the set lj is put equal to zero in the response functions. Thus, for example,

= C 
~~~~~~~~~~~~~~~~~ ~~~~ 

‘

= 

~~~~~~~~~~~~~~~~~~~~~ (3.17 )

= e(a
3
,d , 

a~
’
~~
’
~ ’~ 

,0) ,

= 

~~~~~~~~~~~~~~~ .aN~~
9 C

~~
9ala2. . .aNI~

C
~

• .)  ‘

where the dots iii (3.17)
3 
refer to the higher space and time derivatives of

a ,. - . ,Ô . Then, with the help of (2.12) to (2.11+) and the integral/~ —3

A 13.

~~~~
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of (3.8) with respect to time , we obtain

W = Eb~terna1 mechanical work supplied 
to a part a~~C~~~

of the rod during the time interval t1~~t~~t2

= s~:u:P t. v + . d s + .v+ w

= ~K+~~E±W +tb2 
(3 .18)

and

= ~~ternal heat supplied to a part a~ 
of the rod

during the time interval t1 ‘t’ 
t
2

= 
S

t

2{S

B
P(r + z r )ds - [h + E h ]B} cit

t1 a a,N a1~~.. -aN a,N a1o~ .. .ar~ a

(3.19)

where

= - 
S 

2j ’ p(8~fl ’ ÷ E 8 )ds dt
t1 a a,N a1a2~ ’ ‘aN a1a2~

t
21,B B

~ = ç  j p w d s dt , E = 5 p € d s  , (3.20)
t1 a a

~~p (v .v+2y
oav .w + y~~w •w )ds— — —~~ ‘—a —B

The prefix ~ in (3.18) denotes the 
difference operations or.. functions and fields

during the time interval [t1,t2
], e.g., ~E=E(t2)-E(t1). Also, win (3.20)2

is given by

- .1

, I
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Xw = F -  
~~~
-

~~~~
‘) - x(~ ’ + li ’8~ E a a a .. .aa,N 1 2 ’” N 1 2  N

= - x r ( i ~-,1’) e+  E (~ -
~~~~~

‘ )e- 

a, N a1a2 - aN a1a2
. aN a1a~.. .

+X (B~ -I- E B
a,N a~~~ . .

~~~~~~ 
a1a~. .ai~:

+ k  ~e/~C ÷ E k /~C (3.21 )
a,N a1~~ . ‘aN a1a2

. .aN

= s ’ - Bli ’ - 
. ~~~~~ - aN 

‘ (3.22)
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1+. Thermoelastic rods

A thermoelastic theory of rods by a direct a pproach was given by Green and

Laws r~~ j  and was developed further by Green, Laws and Naghd.i [7] and by

Green , Nsghdi and Wenner [5]. The previous work made use of a one-dimensional

Cleusius-Duliem inequality and only one temperature field was considered, which

corresponds to the curve temperature 9 of the present paper. We consider now

constitutive equations for a thermoelastic rod which admits 4(K-t-l)(K+2)

temperature fields and we examine the restrictions imposed on thes~ equations

by the procedure described at the end of §3.

W e assume that the set of variables (3.11+ ) are functions of

/~C , B , B ‘ alo~~
...a N 

, ( 14. 1)

as well as the reference values

(14.2)

and in addition may depend also on the particle c- In the set of reference

values (14.2), ~ is the constant reference value of B and we have assumed that

the reference values of ~ (a= l,2,; N= 1,2,...K) are zero. Postponing
- 

a1a2 - , aN
the restrictions to be imposed by the invariance requirements under superposed

r igid body motions and recalling the procedure outlined in ~3, the energy equa-

tion (3.12) is identically satisfied for all thermomechanical processes provided

= 0 
ala2

.. .aN
/
~

C) = 0 ‘ ( 14.3)

= 

~
(a3,d ~~~~~~~~ a

A

3~~~2a
,

~~~~~~d~~~~C 1 6I C) ( 14. 14)

n _ x ~~L ~~~~~~~ a _ (1+~~)—. — 

~s 
~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

l i - u , 11 = -  ( 14.6)
a1a2

. •~
OtN bBala2 ...aN 

‘

I

- - - - - 
_ _  

.— -L~k 

~~~~~~ 
- ‘,A# . ’ - ~~~~~~~~~~



I 
- —  — — —

x(e~+ E ~ a 
)+k~9/~C+ E k a a /~c) = o  , ( 14.~ )

a,N a1a2
. ‘

~ N a1a2
.~~ N a,N 3~~~” N 

a1c~~-..

where as indicated in (14.3), the function $ is independent of’ temperature

gr~dients. It is understood that 
~ 

appears in 4r only in a form whichalo~
...aN

is completely symmetric in the indices a1~~ - .aN
. Formulae (14.5) and (14.6),

with 9 absent, were obtained by Green, Naghdi and Wenner [5]~ withal~~
.

the help of the Clausius-Duhem inequality. Alternative forms for the results

( 14 . 14),  ( 14.5) and (14.6)
~ 

have been given by Green and Laws [3] and by Green,

Naghdi and Wenner [5] after making use of invariance conditions under super-

posed rigid body motions. For later use we record one of these alternative

forms here and for this purpose we introduce the notations

d.3 = a
3 

, h~~~= d 1
.d~ , X i = d i ’

~~ ;c/~C
(14.8)

= , hij = d1 . d~ , h = det h.~ ,

where Latin indices take the values 1,2,3 and, from (2.1), we recall the

condition

= ~~~~~ > 0 , (14.9)

so that h2 is a single-valued function of hij. For the duals of quantities in

(14.8) defined relative to a reference configuration, we employ the corresponding

capital letters, e.g., Aia~ 
Hi4, etc.

4-I

Under superposed rigid body motions the vectors a
3
,d ,~d0/~C 

become

~~ ~~~
, 

~~, ~~~, Q(~~~/~C) ,  where Q is a proper orth ogonal tensor func tion of th e

time, and the corresponding value of the free energy response is given by

tIn this paper p. 1490, equation 
~~~~~ 

should read ~a . x~i/~ d
’.

1 1  

17.
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4
+ 

= 
~ (Qa

3
,Qd , ~/~C,B,e : : ,~~~~C,® ; C) . ( 14.io)

Then , by ( - ~. 14 ) ,  (14.10) and the invariance condi~~cr -;
‘

= ~ , we have

= ~~~~~~~~~~~~~~~ (14.u

for a1 proper orthogonal tensors Q. It follows :‘rcn Cauchy’s representation

theorem that ~ may be expr essed as a different fu~cticn of the inner products

and sc~~~r triple products of’ a3
,d 

~~~~~~~ 
namely the inner products (14.8)

2 3  
and

, ~~~~~~~~ , ~~~~~~~~~ , [~~~3~~~/~C]
(14.12)

[~~~1/~C ~~/~C] -

In view of (L4.9), each of the scalar triple products in (14.12) may be expressed

as a single-valued function of h2 and (14.8)
2,3 and hence of ~~ and Xai•

E lmilarly, if instead of ~2.l)3 
or (14.9) we make tre choice [

~l,~~
,
~ 3
]<0 for

all motions , ttien we may again reduce $ to depend only on h
i j~ Xai~ 

apart from

the reference variables and temperatures. Hence, we may replace ( 14 . 1+ ) by the

different single-valued function

4 = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C) , (14.13)

where

= h~~ - Hij ‘ ~ai 
= Xai - t (14.:~

Let ~e a set of base vectors with I
~~~~a3

]~~0 and let be their reciprocals.

The base vectors ~~ ordinarily will be taken to be orthogonal but this is not

essential at this point in our development. It is now convenient to introduce

the component forms of the kinematic variables ~~ ,d1 and of the kinetic variables

relative to the base vectors or a~ . Thus, we write

18.
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= ~~~~ = d1~a~ , di = d’~a~ = ~J
1 3

(14.15)
I a ai a ain = n a .  

‘ , ~ ~~~~ a .

It then follows fr om ( 14 . 5 ) ,  ( 1+ . -~) and ( 14.13) that

A . A
d3.(n’-X 3p~~) 

= 2k —
~~~~

— , da:n1 _ d 3:x a P~~
=
~ 

—h--1 ~~~ . 1 ip.

A
d B . ( ~ ai 

- >~ 
a~vi ) + da.( ~ B1 

- 
~ 

B~vi~ = 1+
1 p . 1 

~~~ . 
.
~~

( 14.16)
A

ai 
- 

~~~~ 
~-

— 

‘~ 
~~aj

A A
~1 — -

‘ ‘aa ...cw 
— 

~B1 2  N ala2 . . . aN
A

and in evaluating (14.16)1 2 9 is regarded as a function of ~~
‘ ,y and

The results (~ .l6) are equivalent to (7.140) in Green, Naghdi and

Wenner [53 ; those in Green and Laws [3] are a special case of (14.16) when

apart from some changes in notation and definitions.

With the help of (2.11+) and (2.16), the moment of momentum equation (2.15)

can be expressed in the form 
-

0 . (14.17)

This equation is identically satisfied by the expressions (14.16). This implies

that the only relevant field equations are (2.13) and (2.11+).

In a similar manner, with the help of invariance conditions under super-

posed rigid body motions , the entropy flux functions k,k may be reduced
a1a2. - .aN

to depend on the variables displayed in (14.13).

With the help of (14.5) and ( 14.6) we see that the expression for w in

(3.21) is zero and the external mechanical work W and external heat supplied

~j in (3.18) and (3.19) reduce to

j 19.
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th = AK +AE ’+th (14.18)

and

(14.19 )

wher e

B
= 

~1a
P5 Id5 (14.20)

and K and tc are defined in (3 .20).

I -

~~~~~~

1 . 1
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The second law of thermodynamics

Previously, in the context of the three-dimensional theory, ~reen ard

~~-hdi rl ,2~ have discussed th- rtat~re of thermod~mamic irreversibility

arising from a mathematical interpretation of a statement of the second la~
namely that “it is imrcssible completely to reverse a process in which energy

Is tra~~ formed into heat by friction .” Here we follow the same procedur e and

reconsider a mathematical interpretation of a second law appropriate for a

direct theory of rods which admits more than one temperature field. In earlier

works [
~ ,5 ] ,  a Clausius-Duhem inequality was used and only one temperature

field was admitted.

The state of a rod. at time t which is regarded as representing a thirL

rod-like three-dimensional body, is described by the position vector r and the

directors d , the velocities v,w , the temperatures 8,8 ( N1 ,2,...,K)
-~~ -~ -a a1a2

. aN
throughout the curve c, together with the constitutive response functions for

the fields(3.l14). A thermo-mechanical process or simply a process is a time

sequence of states : it is a continuous oriented curve in the space of states,

i.e., the ~~~~~~~~~~~~~~~~~~~ space. Thus, a process may be specified by a

sequence of values -of

r , , e 9a1a2
. . 

(5 .1)

on c in the time interval 0~~t~~a. Similarly, the reverse process is a process

defined by a sequence of values of (5 .1) on c in the time interval a~~t~~2a

subject to the conditions

r(t) = r(2 ~ -t) , d (t)  = ci (2a-t) ,— — —a —a 1 .1

(5 . 2)

e ( t)  = e(2a-t) , 8 (t) = e (2a-t) . ~~.

r
In any process the w~~k done by the externa l mechanical forces acting on

-- .- -~ 
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a part a’—C— ~B 
of c, and given by (3.18), is a positive or negative depending

on whether the external work is supplied to, or is withdrawn from, the part.

In general, some of the work done results in a change of the kinetic and internal

energies represented by the first two terms on the right-hand side of (3.18)3,
each of which may be positive, negative or zero. Also part of the work done

may be positive with a corresponding absorption of heat by the part a~~C~~B

or negative with a corresponding absorption of heat by the part. We note that

in the case of an elastic material the different contributions to lb will vary

in sign depending on the process and will not be restricted to be either

positive or negative for all processes . Consider any process in the time

interval O~~t~~c, and its reverse process in the time interval c~~~t~~2cy. If

the process is reversed in such a way that at the end of the process and its

reverse process the elastic rod has returned to its original state with A 9=0,

~
8
alc

~~...aN
°’ ~~ij

°’ ~
‘ai=°’ A v=O , ~

w =0 and, hence, ~~=0 , AT~=0,

Alia a 2 a~
=O

~ ~~~~~~~~ 
~~~~~~~~~~ 

0, A f l O, ~~~~~~ ~~a 0, ~~~~~~~~~

=0 and ~K= 0, AE= 0, then all the work done in the process isa1cw2.. .aN -
~recovered as work in the reverse process. This recovery of work would not be

possible if in every arbitrary process part of W always has a positive sign.

With this motivation in mind , we assume that for any arbitrary process in a - 
-

dissipative rod only part of the work done is recoverable as work in the

reverse process, the rest being transformed into heat. We therefore assume -L

that in every process part of the work done is always nonnegative. Then, if at-

the end of any process and its reverse process the rod has returned to the

same state, some of the work done is always transformed into heat. Recalling 
- 

-

that ~,=0 in (3.18) in the case of an elastic rod, we interpret the above

assumption for a dissipative rod by requiring that

-1- H
If work is extracted in the process then it is absorbed by the rod in the/ I reverse process.

22.
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P..

(5 .3)

for all parts of c and all processes , where is given by (3.20). Since t1,t2

are arbitrary and w has already been assumed tc ce continuous , it follows tha t

- Xv = p— x(~~-~~ ’) — X (r ’ +‘ f l’B + E ~~
‘ � 0 ( 5 . 14)

a, N aN a1a2 • aN
for all thermo-mechanical processes. Also, from (3.19) and (5.14), we have

~ 
+ ~~)ds dt ~~~~

so that the external heat supplied to any part of’ c is bounded above in any

process.

I l
I’
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6. Summary of results from three-dimensional mechanical theory.

Consider a three-dimensional body , embedded in Euclidean - -sp~ice , and let

its particles be identified by convected coordinates ~~ ( i =  1,2 ,3 ) .  Let r

denote the position vector , rela t ive to a fixed origin , of a typical particle

of the three-dimensiona l: body in the present configuration at time t. Then,

1 2 3  * -~ -~~~
= L (

~ ~ ~C ,t) = 

~: 
/~C =

(6. 1)
i i ik I

k =
~~r~~ . ‘ ~ , g = g  •g ,

where g1 and are coven ant and contravariant basy vectors , respectively,

and g are covariant and contravariant metric tensors , respectively, and

is the Kronecker delta. Also a superposed dot denotes material time deriva-

tive holding C fixed and v is the velocity vector .

The str ess vec tor t acr oss a surface in the present configuration whose

unit outward normal is v may be expressed in the form

~ *jk * *j *~= 

~~~~~~ 
/g = 

‘ 
~~ 

= = v , (6.2)

where are the contravariant components of the symmetric stress tensor.

~.e do not recall here the consequences of the conservation laws of

the three-dimensional theory since they will not be needed in the present

paper.

The parametric equations C
a=o define a curve in space at time t which we

assume to be smooth and which we identify with the curve c. Any point of c is

specified by the position vector r relative to the same fixed origin to which

r is referred , where

= r(C,t) = r ( O O C t )  C~ = C . (6.3)

Let the boundary of the three-dimensional region occup ied by the body at time t

214.

~~~ ; ~~~~~

- 

~~~ ~~

—.. 
~~~~~ 

- - -

~~~~~~~~~~~~ 
uU~~~~~~~~. . ~~~~~~~



- -
~~~~~~~~~ w —  -

I
“-

be specified by the material  surface

= 0 (6.1+)

and by the surfaces C= a ,~ . The surface (6.1+) is such that C= D nstant are

curved sections of the body bounded by closed curves on this sur:ace.

Euppose now that r * in (6.1) 1 is a continuous function of and has

continuous opace and time derivatives of order 2 in the bounded region lying

inside the surface (6. 14) and between C=a,B . Hence , to any req~ ired degree of

* 1 2approximation , r may be represented as a polynomial in C ~C with coefficients

which are twice continuously differentiable functions of C,t. instead of con-

sidering a general representation of this kind: we restrict attentior. here to

the approximation

= r(C t) + Cad (C,t) . (6.5)

Given the approximation (6.5) it is known (see , e .g . ,  Green , Laws and Naghdi

1968 , Green and Na ghdi 1970 ) that the field equations of the forms (2.12) to

(2.l5) can be derived from the three-dimensional equations provided we identify 
-

d in (6.5) with (2.1)
2 
and adopt the definitions

pa~3 
= X = $Jii dc

1
dc2 = p~g~ = i~(C

1
,C2)

- 

- (6.6)
Xy~ =

and

* 

= 

~~$ 
T3d~~dC

2 
, = 

$~~ 

TadC
l
dC
2

(6.7)
= J$ 3d~~d~ ~

where p is the three-dimensional mass density and the integrals are taken over

any surface C=constant bounded by (6.14). For some purposes It is convenient

* 25.
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to define the curve C

a
=O , C

2=
~ 

in relation to the surface (6.1+) so that

but this is not essential. The assigned forces r ,? are related to

* the three-dimensional body fcrces f and to the effects of the stress vector

(6.2)i over the boundary surface (6.1+) by

= SS r*dC
ld_ 2~~~E(T

l l
T3)C

4 (T2-x~T3)dç
1
]

(6.8)
= ~ ~~~C

a
dC
l
dC
2 +~ Cal ~~~-x 3 3)dC2 - (T2-x2T3)dC1] ,

where the line integrals are taken along the curve

C = const. , F( C1,C2 , C)  = 0 , (6.9)

~~~~~~ ga and

X =  X~~~+ g
3 

(6.10)

is a vector tangential to the surface (6. 1+) so that

x~ 
* 

= 
a * *  = 0 . (6.11)

26.
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7. Thermodynamical results from three-dimensional theory

In this section we obtain same thermodyriamical results for a rod-like body

n the  basis of the recent thei~~ody nemical theory of Green and Na ghdi [1].

Tb~s , along with th~ three-dim~n~ i~ra1 temperature field = 9 (C
1,t)>0 we

admit the existence of an exterr~~ rate of supply of heat -h per ur.it area

actir.~ a cross the boundary ~R of a region of space ~ occupied by the body in

the present configuration at time t. Also we assume the existence of an

in te rnal  surface flux of heat -h = -h (C
i
,t ; v~ ) per unit area across each

+ * *surface ~~ which is the boundar:: of an arbitrary part ~‘ of ~ . We define the
* * * * iratio of the heat supply r to temperature ~ as s = s (C ,t) and call this the

external rate of supply of entropy per unit mass. Similarly, we define the

ratios of h* and h* to temp:rature, respectively, as the external rate of

surface supply of entropy k per unit area of ~~ and the internal surface flux
* $- * *of entropy k = k (~ ,t ; ‘~, 

) per unit area of ~p . Thus

* * *  —~~ *._* * * *r = 8 s , h = B k , h = B k . (7.1)

* - * * iIn addition, throughout R we assume the existence of a scalar field i~ = r~ (C ,t)
per unit mass, called the specific entropy and an internal rate of production

of entropy ~ = 
~ (C ,t) per unit mass. The contribution of the latter to the

* *rate of production of heat is 8 ~ per unit mass.

We recall the balance of entropy in the form

~ ~~~~~~~~~~~~~~~~~~~~~ 

= 
$ 

p
*(s*.I~ *)dv - $ * k*da (7.2)

for every material volume occupy-ing a part P in the present configuration. It

H 
follows that k is linear in v , i.e.,

* * * * *1k = p . v = , (7 .3)

I t * * **  *where p is the entropy flux vector . Then, from (7.1) and (7.3), h = 8

27.
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*and we may define the heat flux vector q by

* *~~q = e p  . (7.1+)

Wi th the help of (7 .3) ,  the field equation corresponding to (7 .2)  is

= p
*(5*÷~*) - div p~ , (7 .5)

where

* ~1 *~~1 kdiv p = g 2~(p g2)/
~~ 

. (7 .6)
a a a 

*
~ altiply (7.5 ) by C 1C 2~ . C and integrate over an arbitrary part P in

the present configuration. After us ing (7 .3) and some straightforward manipula-

tion , we obtain

~~ S~*P~~ C ’C 2 .c
aNdv = S + P

*(S *+~*)C
al

C
a2 . . .C N 

- S~~+k*C
a1C~~.. .C aNda

+ S ~(p 
1c~~~~CaN + ÷p

*aN
C
al
...C~~~

l)dv . (7.7)

We now suppose that P is a region bounded by the surface (6. 14) and by

C a,a. Then for a rod-like body , from (7.2) and (7.7) we may derive the

balance equations (3.5) and (3.6) without any approximations provided we make

the following identifications:

I’ * 1 2 ~ ~~~~~~ aN 1 2
XTI = J ~T1 dC dC , Xli = p.11 C C . . . C dC d~~ , (7 .8)

‘I

= IS ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ (*22 *3 )C
l
I ,

~~a1 a2 aN 1 2
* Xs . = $ ~ 5 ~~ .. .

~~~ dC dC

~ 
*~~

al a2 a N * l  1*3 2 (v~~~x2v*3)dCl] , (7.10 )

* 1 2
(7.ll)

.. 

~~~~~ . 
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I
— I~~~ aN 1 2

= X~ . .a.~ Ji p.~ C C ...C dC dC

(7.12)

= ~~ ~~(p 
l

C 
2

C
3 ::~~

= j ~~(gg33~~dr 1d~
2 

= IS ~~~~~~~~~~~~

~~~2 ” .aN 
= S~ k (gg33)2~~l. . . ç Nd~

1d~
2 

(7. 13)

= $5 p*3g~*~al~~ 
. C

aN
dC

l
dC~

We also recall the three-dimensional equation for the conservation of

energy, namely

d r 1 * * * * (~ * *  * * * ~ * * *
~ - j  ~(~ v ~ v ÷ e  )p  dv = j  ~(s ~~ 

+~~ 
. v )

~ d v+ l ~
(t.v -k e )da (7.114)

P P
*wher e ~ is the internal energy density. Suppose in addition to the approxima-

tion (6.5) for the displacement vector , we adopt the approximation

* a a.., a
B = 9+ ~ B c 

1
c ~~~~

. c 
N (e>o) (7.15)

a,N a1a.~. ..aN

for the temperature field. The summation in (7.15) is over all values of

N = l ,2,...,K and all Greek indices have the values 1,2 . The functions

8,8 •~ 
depend on C, t and B is completely symmetric in its

suffices. Then, for a rod-like region bounded by the surfaces (6. 14) and C a, 8,
from the energy equation (7.114) we can derive the equation of balance of energy

(3.8) for a directed curve provided we make the identification

Xc = 5 p.5*~~l~~2 , (7.16)

in addition to (7.~~ to (7.13).
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8. Restrictions on heat flux vectors and internal energy

Suppose that the three-dimensional rod-like body is in equilibrium with
*v = o and all response functions are independent of the time . As part of their

th~~~3d~~amic restrictions on constitutive equations, Green and Naghdi [1]

have adopted the classical inequality *

* * * *-q .g  ~~0 or -p • g  ~~O

(8.1)
* *

= grad B

for all time-independent temperature fields. Irategreting the inequality (8.1)
2

1 2with respect to C end C , we obtain

1 * * 1 2-$5 g~~ • 
~ dC dC ~ 0 . (8 .2)

With the approximation (7.15) for 9* and with the help of (7.12)
2 
and (7.13),

it follows from (8.2) that

X E e +k~e/~c + E k /~c ~ 
0 (8.3)

a,N a1a2~ aN ~1a2. a,N oc1a~. aN a1o~~.. .
for all equilibr ium displacement and t~ nperatur e fi elds . With the above motive-

* 

tion, we add an inequality of the form (8.3) for all equilibr ium states to the

thermodynamic inequality (5.14) which was derived directly from one-dimensional

postulates .

Next, suppose that the Cosserat curve ft is at rest with

v = o  , w = 0 (8.1+)— — -a — -

for all time and with the deformation gradient, director and director gradient

each constant for all time. Then, by (2.12), p is independent of t. In

addition, we restrict the t emperature fields to be spatially homogeneous so

that ~=e (t), ~~~~~~~~~ 0 (N=l ,...,K). Keeping these conditions in mind ,

from a combination of (3.7) and (3.9) we have

30.
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X(r+ ~ r a 
- 

~(h+ Z h )/~ç = . (8.5)
a,-~ 

a1a~ N a,N a1a2- . .a~1

In view of (8.1+), no mechanical work is supplied to the ‘osserat curve ft. Then ,

using (8 .5 ) ,  the heat supplied to a part a~~C~~~ of the ma t eria l curve of R

during the t ime interval t1~~t~~ t2 is

t B
= $ 2~J (r+ ~ r )pds - [h+ ~ h ~~1dtt1 a a,N a1a.~. a,N a1a2~ a

= j peds . (8.6)
a

Suppose that the rod is in thermal equilibrium during some period up to the

t ime t1 with constant internal energy e
~ 

and constant temperature 9 = 9 .  We

assume that whenever heat is supplied t the part ~~~~~~~ under the above

* 
conditions , the temper atur e 9(t) throughout the part will be increased , i.e.,

t2
> 0 whenever ~ > 0 . (8.7)

* I
~1

Provided that PC ~ 5 continuous and remembering that p, which is independent of

t, is positive and a,~ are arbitrary, it follows from (8.6) and (8.7) that

e(t) -~~ >0 whenever € (t) - c1 >0 (8.8)

for all t ,- t1. -

4

- .  
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9. Symmetries.

In the rest of this paper we restrict attention to the case in which K=l

in the earlier pert of the paper (**3,~ ,5) so that we consider only three

t emperature fields 
~‘~1’~2

• The inclusion of the two tempera tures 
~l’~ 2

allows us to take some account of temperature variations across the thickness

of the rod but the more general situation K>- l can be dealt with in a similar

way. We also restrict attention to rods which in a reference configuration

are straight. We therefore consider the form of the Helmholtz free energy

function in (14.13) which is such that the rod. described in *2 models the main

fea tures of a three-dimensional elastic rod which has the following properties

in its reference configuration:

(i) It is straight with constant cross-sectional areas normal to the

line of centroids of sections, (ii) each cross-section has two orthogonal

axes of symmetry through its center of mass, (iii) it Is homogeneous and of

constant t~~iperature, (iv) the material of the rod possesses rhombic symmetry

with respect to orthogonal axes of sy~mnetr y and. the line of cent roids .

We choose the initial referenc e curve C to be along the direction of the

constant unit vector ~~~, and the initial director s in their referenc e con-

figurations to be specified by

(9.1)

where ~~~~~~~~ are a constant orthono rma l system of vectors . Also , D1, D2 are

nonzero constants In line with ( i )  and (ii ) above. The Helmholtz free energy

function (14.13 ) then r educes to the different functional form

= 

~~~~~~~~~~~~~~~~~ 
D1,D~) , 

- 

(9. 2)

which by virtue of (I i i)  does not depend explicitly on 9,~~. ~~reover , recalling

(6.5) , our theor y models a three-dimensional rod-like body which in its reference

32.
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*state has a position vector R specified by

= C~3 + C’D .~+ C 2D2~~ . (9.t)

Naterial s with rhombic symmetry with respect to the three directions :cr.tain

three classes, namely rhombic-pyramidal, rhombic-disphenoidal and rhombic-

dipyramida1*
~ For each of these classes , it ca n be shown that the three-dimensional

energy function for an elastic material is also form-invariant under th~ three

separate coordinate transformations

(a): C’ ~~~~
- C’ , (b): ~ ~~~~

- C2 
, (c): C ~~~~

- C . (9 .1+)

The conditions (9.1+) are those which arise from symmetry restrictions usually

called orthotropic symmetry. In the direct formulation of the theory of rods

under discussion , we replace the notion of rhombic symmetry by that of orthotropic

symnetry with respect to three orthogonal vectors e. . Therefor e, we further assume

that the one-dimensional energy function (9.2) is unaltered in form under each of

the transformations (a) to (c) listed below:

D1 -.-D1 , D~~-.D2 , ~~~~~~~~~~~~~~~~~~~~ ,

( a ) :

‘ 
~l

’
~~~1 ‘ ~~~~~~~

i.e., under the transformation

- - 
G1 = 12,~13,K12,K21,K13,e1,D1) ~-G1 ,

~
‘ll ~

‘ll ‘ 
~
‘22 

— 

~
‘22 ‘ “33 ~

‘33 ‘ 

~
‘23 ~

‘23 ‘ (9.5)

K11 K11 ~22 
K22 ~23 

— 

~23 ~ ‘ ~2 ~2

D2 -.-D2 , D1 -.D~ , ~~~~~~~~~~~~~~~~~~ , ~~~~~~~~~~~~

4 (b):

e-. e , 
~2~~~~2 ‘ 

~1
’
~~1

i . e . ,  under the tr ansformatIon

+See , for example , keen and Ad.kins [81 which contains additional references

— 

on material Bynmietries . 
. 

-

- 
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G2 
= Cv 12,v23,K12,K21,K2~,e2,D2) 

-.

~ll ~1l 
‘ 

~22 ~22 ‘ 

~~~ 
Y33 ‘ V13 V13 

(9 .6)

K11 K,1 , K22 
— K22 , <~ 

-. K13 ‘ 
~l

and

~ D1 -.D1 , D2 -.D2 , I~~-.-D , d -’-d ~~~~~~ ~~~~~~~~—
~ —3 —3 —3

(c): 
-

8 8  ‘ ~2~~~ 2

i.e., under the transformations

~
‘l3 ‘ 

~
‘23 ~

‘23’ 
K11 —- 

~ll 
K12 — - K 12 , K~1 ~~~~

- K21 , K22 
-.- K

22

•
~11 

‘
~
‘ll ‘ ~

‘22 V22 , 
~f33 ~f33 , K

13 
-

~~ K13 23 23 -K -.K ~(9.7)

Next, in view of the condition (ii), we assume that $ in (9.2) is
unaltered in form under the transformation

(d): ~~~~~ — -~~~~~ , 
~~~~~~~~~~~~ 

e
3

-.~~
i .e . ,  under the transformations

D1 - . -D1 ‘~2 -‘ 1)2 ~ij ‘I’ij K~~ K ia ~ ‘ 9a — ~ (9.8a)

and $ is unaltered in form under the transformation
~,

1

( e ) :  ~~~~~~~~~~~~ 

~~~~~~~~ ‘

i.e. , under the trans formations

D
1 

— D
2 

, -.- 
‘ ~

‘ij ~
1ij ~ 

Kj -~~ K~ ~ 9 -. 9 ~ 9 — 9 . (9.8b )a

314. 
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~ similar discussion may be carried out for the functions

that each of these functions may depend on ~9/~C, ~
9B/ ~C in addition to

:-~ . s-~ specified. in (9.2). In view of the energy identity (3.12) we assume

ta : ~8, ~~9 , k~8/~ C, k~~ 9/~ C for a = l ,2 are each unaltered in form under the

~rarsformations (9.5) to (9.8). To each of the transformations (9 .5) to (9 .8)

~ add , respectively, the transformations

(a): 
~e/~C ~B/~C , ~B1/~C -.- ~B1/~C ~92/~C -. 

~B2/~C ‘

~b): ~e/~c — ~e1/~C — ~e1/~C ~
82/~C 

— -  

~e2/~C
(9.9)

(c): 
~e/~c -~-~ 9/~C ~B~

/
~C — -~~8~/~C

(d) and (e): 
~e/~c -. ~ d~C —

After applying invariance conditions to ~~~~~~~~~~ using (9.5) to (9.9) we

specify the initial directors to be coincident with the unit vector s 
~l’~2’

i . e .,

D1
= 1  , D2 = l  . (9.10 )

In order to make the above conditions explicit we limit our attention to

the linear theory of a thermoelastic rod which- is in equilibrium, unstressed r

and at uniform temperature in its reference configuration. For this linear

theory the position veetor r , directors d and their corresponding velocity

fields assume the f orms

- r = R + u  , d = D + 6  , v = u  , w = 6  ,
— ~.-..I —1. 1 — —a a

(9.11)

4 - 
= Uj~~j 6j  = iJ %j ‘ 

= UjZj 
~a 

=

and we replace 9 by 9+ 9 so that 
~‘~l’~2 

are small and 9 is the constant

reference tenpereture of the rod. Using (9.10), the kinenatic measures of

deforma tion become

j 35. 
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~~~~~~~~~~~~~~~~~~~~~~~~~~~
(9.12)

= 

~6ai/~C ‘ 6~~ =

The response functions n ,n ,p and external fields f ,L are referred to the
— - a -a ‘— --a

orthonormal basis e1. Thus

n=n .e. , i-r = ii e. , p = p . e .
— 1—4]. —a al—i —a ai—s.

(9. 13j

f = f .e. , L = L . e
— i—..i —a ai—i

and the relations (14.i6’ simplify to

A A
— 2  —

~~~~ — n = —~~~~
—— ~ ‘ a ~ 

~~
‘a3

÷ 

~
= ‘

~
‘
~t 

‘ ~~~ = p , (9.114)

where p is now the constant reference density and in evaluating (9.114)2 ~ 
the

- A ‘

response function $ is regarded asa function of and ~~~~~~~~~~~~ The

equations of motion (2.12) to (2.15 ) are replaced by their corresponding

linearized forms in terms of n~~rr~~ and p~~ with X = p, and the linearized

entropy balance equations still have the forms (3.7) with X = p. All these

equations are listed below in four ~~oups.

W e omit detailed discussion of the invariance conditions satisfied by $,

which is now a quadratic form in Vij~Kai~9~8 
but note that the final r esults

separat e into four ~~oupa corresponding to flexure (2 modes ) , extension and

torsion of the rod. Similarly the symmetry restrictions on 
~~~~~~~~ 

which

are now linear forms of de~~ee one in 
~~~~~~~~~~~~~~ 

and 
~
9a/~C 

place these

functions in the same four categories. In addition, these functions are subject

36.
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r
to the identity (14.7), which in the present context becomes

p(~÷9)~~+ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~92/~~ 
= 0 , (~, .15j

and the inequality ( 8 . 3 ) ,  namely

p81~ 1~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ 0 . (9.16,

Symmetry restrictions of the type considered in this section must also apply

to the kinetic energy (2.5) so that the inertia coefficients reduce to

11 22 12 21y = a 1 , y — a 2 , y = y  = 0  , (9.17 ,

where for a homogeneous rod, a1,a2 are constants. The Helmholtz free energy

function $ can be expressed in the formt

= 

~Fl 
+ 
~
‘F2 

+ ÷ 
~~ 

(9.18)

where the subscripts Fl,F2,E,T attached to $ on the right-hand side of (9.18)
refer to the four modes of deformation mentioned above and we recall that we

adopt the values (9.10) for D1,D2 after the discussion of invariance. The

values of the constituent terms in (9.18) are listed below and we also include

the notation m1,m2,m3 
for the components of the couple rn acting over any

section c = constant of the rod where

r n = m~~~ . (9.19)

All response functions ~~~~~~~~~~~~~~~~~~~ are assumed to vanish in the

reference configuration. The identity (9.15) and the inequality (9.16) are

also used in obtaining expressions for ~~~~~~~~~~~~ - *

~~~ (9. 18), as well as the rest of this section , we use the same symbol for
a function and. Its value .

37.
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Flexure Fl

= k
5V~ 3 

+ic
1543 

+ k
25

K
23~ 2 + k20 (~ 2

)2

~23 
= n2 = k

5V23 , m1 = p
23 

k 1~~K23
+~~k

2582

= - k2c~2 
- ~k

25 K23 ‘ 

~2 
= + c

292 , = , k~ = e2~ e2/~ C

V23 
= 623 

+ ~u2/~ C , K~ 3 =

(9 .20)
+ pf

2 
= p~

2
u2/~

t2

- n2 + pt
23 

=

p~ n2/~
t = p(s

2
-i-~2
) -

e2~~~
0

Flexure F2t

2p$~~ = k
6-y~3 

+ k
16K~3 

+ k
214K1391 

+

1113 
= n1 = k6V,3 , m~ = - p13 

= - k16K13 
-

~~l 
k
1991

k214K13 ‘ 
~l 

= b
1K13

+b
291 ‘ ~l 

= b
291 , = e1~ e,/~ C

V13 
= 813 

+ ~111/~C , K~3 
= 

~
8l3/~C

(9.21)

~ 1/~C 
+ pf

1 
= p~

2
u1/~

t2

+ n1 
- PL13 = - pa1~

2
613/~

t2

p~~1/~t = p (s1
+~1) 

- ,

b2~~~
0 , e1~~~

0 .

tThis corrects two misprints in equations 
~~~~~ 

of Green , Naghdi and
Wenner [5]. ‘
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1~Ebctens ion E

2p~~ = k,V~, + k
2V~2 

k
3V33 + k

7V,1 V22 
+ k~~ 11 V33 

+ k V2 V

+ + + k
17K11K22

+ k
22V229 + k

23V339 + k18(~ )
2

1111 = 2k,V,1+ k
7V22 + k 8V33 + k 219 , 1122 k

7V11
+2k

2V22
+k
9V33 +k229

= k8V11+k9V22
+2k

3V33 +k239

p11 
= k10K11

+-~k17K22 , p22 =
(~ .22)

= 0 , p11 = - ~
-k
21V11 

- 
~
-k
22V22 

- ~k23
y33 

- k189 , k =

V11 = 2611 ‘ 
= 2622 ‘ V33 = 2~ i

3
/~C

K11 
= ~~~~~ , K22 ~

622/~~

~n
3/~ C + p f

3 
= p~

2
u
3
/~t

2 
,

+ pL11 
- 1111 

= ~~i~
2
~ii/~~

2 
,

~

P22/

~

C + 
~~22 

- 1122 = pa
2~~&22/~

t

p~’fl/~t = pa - ~k/~C , g1 ~ 
0 . 

* (

~In writing the coefficients ~ and i~ an overbar is used to avoid confusion with
the entropy fluxes k1 ,k2 in Fi and F~ .
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Torsion T

= 
1 4 i 2~~2l~ 

+ k
12K~2 

+ k
13K~1 

+ k
114K12K21

1112 
= 1121 

= 

~~14(V12~V21) , p12 
- p
21 

=

p12 
= k

12K12+4k114K21 ‘ P21 
=

(9.23)

V~~ 
= V21 

= 612 + 6 21 , K12 
= 

~~~~~~ 
, K21 

=

- 1112 + =

/ 2— / 2
- 1121 + pL21 

= 

~~~ 
621/ ~t

~ :1

I

~40.
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Straight orthotropic rod.

‘~- e  consider the special case in which the direct theory models the ma in

-r:r’erties of ~ straight three-dimensional linearly elastic rod whose line of

s~~troids is along the constant unit vector e3
. Each section of the rod is

Z . *
~r1etric with respect to two directions specified by constant unit vectors

In addition the rod is orthotropic with respect to the constant ortho-

~crmal basis e. = (e1,.!~,e3) and it is homogeneous with constant density p -

~~ coordinates along the basis are denoted by x.= (x,y,z), the constant

reference t emperature by 8 and 9 is temperature which is zero in the reference

* *state. If u =u.e. is the displacement vector and e. the linear components of
— 1_i ij

the strain, then

ejj = ~~~~~ ~~~~~~~~~~ 
- 

~~
) = 

~
(u
~~j

+u
~~~
) (10.1)

where ( ) . =~~
( )/~x . . The Helmholtz free energy function $ now takes the

form

**  jj  * * — *2 * *p $ = 
~~

- c
kL

eijekL 
c.~ ei~9 

-
~~~~ 

p (c/~ )9 - p  %B , (10.2)

wher e

— 
ij kL _ ji _ ij

Cjj 
— C

jj 
— C~~ — — c~~ . ~l0.3

The coefficients C~ 1~~~Cjy c~~ are constants and , since the rod is orthotropic ,

the only nonzero component s are +

• 11 11 11 22 22 33 23 13 12c11 , c22 , C33 , C11 , C22 , C33 , c~~ C33 C33 C
23 

c
13 

, c12 . (10.14)

*
4 

* The corresponding components of the stress tensor t1~ and the entropy 1~ are

given by

_____________________________________________________________________________________

~
See Green and Zerna [9, §5. 14] .
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(

tjj = c~J
e
kL

_ c
ijeIJ B , ~~~~ 

= c.jei j
+p *(c/~ )B* - (10.5)

* *
Also , the heat flux vector and entropy flux vector p have the forms

= 
• *  

, 
* 

= 
‘ 

=~~ (d.~ /e)e~~ (io~~

where d~~ =0 if i/Ic and d.~ are constants. For an elastic body

*_  * * * * *
p~ (~~-i-~~ ) -p . g  , g = grad e (10.7,

*
and if only linear terms are retained in ~ then

= 0 . (10.8)

The position vector of points in the rod in its reference state is given

by

R = ~~~ = x~~ +y~~ +z~~ (10.9)

and this corresponds to (9.3) with x = C
1
, ~= C 2, z = C  and D1=D

2
=1. The

I - inte~ ’als in (6.6), (6.7), (6.8), (6.9), (7.8) to (7.13) and (7.16) are all

with respect to cross-sectional areas in the reference configuration of the

rod and their boundaries

F(x,y) = 0 , (10.10 )

with X = e
3 

and Xa =O in (6.10). Then, from (6.6) with C
1= x , C

2 =y ,  C
3 =z , we

have -

* * 11 * 22 *
X = p = A p , X~~~= X y  = p I 2 , Xa

2
=Xy — p 1 1 , (10.11)

where 
-

S 

A = 
‘ ‘

~- 
= 

“ ‘ ‘2 
= Si. x

2d.xdy , (10.12 )

* ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~
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r
the integrals being over any cross-section of the rod.

In order to make identification of the thermoelastic coefficients occurring

in the dir ect linear theory in (9 .20) to (9.23) we make some use of the linear

resuits (9.11) and (9.12), together with the approx imations (6.5) and (7. 15).

Thus ,

= u-x~1
+y~~ =

B 9+x 91
+ YB2 , (10 .13 )

— 
~~~~~~~~~~~~~~~~~ 

~ 
6
3j 

= 
~Ui/~C ~ 

K~~ =

We consider first the thermal coefficients in (9.20) to (9.22) whose values may

be identified by a direct use of the formulae (7.8 ), (7.11) to (7.13) and the

results (10.5)2, (10.6), (10.7) and (10.13). Thus

C1 = 0 = C2 -Ad22/( pe) , e~ = -11d33/e
Fl : (10.114)

Ic20 
= - * r , k~5 

= - 211c33

b1 
= 0 - , = b = - Ad11/(pO) , e~ = - 12

d33/e
F2 (10.15)

Ic
19 

= - 
*~~~~~~~~~~- 

, Ic214 
= - 212033

Ic21 = - Ac11 ‘ ~22 = - Ac22 , k~3 
= - Ac33 , k18 

- p*AC/~
E (10.16 )

g1 =- A d 33/e

• There are no therma l coefficients in (9.23) for the torsion group T.

Turning to the mechanical coefficients k
1
,...,k

17, 
we note that values for

many of these have been given for isotropic rods by Green et al. 5]. Here

we follow similar procedur es but now applied to orthotr opic rods which also

_ _  

*

_ _ _ _ _ _ _ _  *



have two geometrical axes of sy]nmetry in each cross-section. We consider first

the flexure groups Fl and F2 in (9.20) and (9.21). A comparison of the solutions

of equations (9.20 ) ~~ci (9.21) for the problem of pure bending of the rod by

ccuples over its ends , with the corresponding solution of the three-dimensional

equations suggest that ~re take

~~~F2 : Ic15 
= 1

1/s33 , Ic16 
= 12/s33 , (10.17)

where s~~ are the ir.- erse coefficients to ~~ defined by

= 
~(o~6~ + &~o~) , 

- 

(10.18)

where 6~ is the Kronecker delta and s~~ are subject to the same symmetry

restrictions as c~~ in (10.3). When the rod is isotropic the values (10.17)

r educe to thos e given by Green et al. (1967) and Green et al. (l9714b). In

order to specify values for the remaining coefficients k5,k6 in Fl,F2, we

Consider the complete solution of the static isothermal problem in F2 in which

the rod is unloaded along its major surfaces. Thus, from (9.21), when

the static equations may be integrated in the form

* n
1 = N  , m

2
=M-N z ,

2 3 2 (10.19)
— Nz Mz Nz Mz Nu1= - ~~~ .-— +~~~ — - + ( ~-- - R ) z + S

wh ere N,M,R,S are constants . This r epresents the solution of the flexur e

problem in which a beam of length £ in the region 0 ~ z ~ £ is loaded along an

axis of symmetry in the x-direction by a load N. If the couple is zero at

z=L and the rod is clamped at the end z=0 so that u1=0, 6l3~~
0 there , then

- 2
m2 = N(L-z) , ~13 =~~~

- (
~~- L )  , u1 =~~~—(L -~~)+~~~ . (10.20)

The coeff icient k6 only appears in the expression for the displacement u
1 so

14k.

H
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that in order to find a suitable value for k~ we must consider the complete

three-dimensional flexure problem including displacements. The flexure of a

~-yirsnetric orthotropic rod by a force N ~t the end z = £, along an axis of

symmetry in the x direction, is specified by di~p1acements

2
= - 

~~2 
~~~~ - s~~y~ )(L-z) + _

~~~~~~~ 

(..&~_ 
- 

~-) + ~~

= - —~~~3L (t - z ) x y  , (10.21,

w~ = - •.
~~
... [~

3 (Lz -~~ z
2)x+~~(x,y)+Lxy

2
)-Px

wher e P is a constant representing a rigid body rotation and L is a constant

given by

(10.22 )

~23 ~l3 ~23

Also,

- s~~ ~~~ + s~~ ~~~~~~~~ = 0 (10.23)

subject to the boundary condition

L[~~~+ (L÷~ s~~)y
2
-~~ s~~x

2
)s~~ +m [~~~+ (2L-s~~ )xy3s~~ = 0 (10.214)

over the surface (10.10), where (L,m) are direction cosines of the outward

normal to this surface. Recalling the approximation (10.13) for u~, from the

comparison of (10.21)
1,3 with (10.20) we again obtain the identification (10.17)2

for Ic16. In view of (10.20)
2 
we choose the rigid rotation P in (10.2l)

3~ 
and

the function ~~, which is even in y and odd in x and is arbitrary to the extent 
*

1-
of an additive constant, so that

•(o ,o) = 0 , P = - N  
~~~~~~~~~ 

(10.25)

14
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Then, comparison of (10.20)3 
and (10.21) at the end z=0 of the rod for small

values of x,y yields P=N/k6 so that

— ,~~(o,c) ( ~~~5F2 . Ic
6 

- - 12/ 
~~ 

. ~~~~~~ *

Ana1ytica~ solutions for the flexure problem specified by (10.23) and the

surface c3ndition (10.2 14) may be found for a number of simple cross-sections

of the rod. -e merely quote the final value obtained for Ic6 for a circular

cross-section of radius R , namely

F2 k6 
= 

14s +2s~~ +s~~) 
(10.27)

Similarly , when the section is circular , for flexure Fl we have

~~2( ~23+~ l3)

- 

- - 

Its~~ (14s~~ +2s~~ +s~~)

When the rod is isotropic, these reduce to the common value

Ic
5 

= Ic6 
= 21.ilTR

2(1+v)/(3+2v) , (10.29)

where v is the Poisson ratio. This may be compared with a value

6~ixrR
2(1+v )2/(7+14v+8v

2
) 

-

found by Green et al. [5] by a different procedure which is slightly greater

than (10.29) for values of v in the range ~~~~~~~

For the torsion group T we compare first the solution of equations (9.23)

with the Saint-Venent torsion problem in linear three-dimensional theory in the v
manner described by Green et al. [10]. In the present context, for an ortho-

tropic rod, this leads to the choice . - 

- -

—

~ 

—- -

T Ic12 = 1c
13 

, 2k12 
- k14 = £ , (10.30)

where £ is the classical torsiona l rigidity for the rod. With the choice
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(10.30), the isothermal static equations in (9.23) divide themselves into two

~rcups , namely

= (k
12

-~~ k1~ ,~ (612 - 621)/~z , ~ i
3/~ z + p ( L 12 - L 21) = 0 (10.31)

• and

p
12 

+p
21 

= (k~2
+~ k114)~ (612 + Ô

21)/~z , TT~~~ = 1121 
= k14(612+ 621)

(10.32)

+ p
21)/~zJ - 21112 + p (L12 

+ £21) = 0

We now consider the three-dimensional solution for displacements and stresses

given by

u1 
= Lyz , u~ = Lxz , u

3 
= 0 ,

(10.33)

t1~ = 2c~~Lz , t
13 

= Lc~~y , t
23 

= Lc~~x . ~
- 

-

The system of stresses in (10.33 ) is in equilibrium and can be maintained with

suitable surface tractions. Corresponding to this we see from (10.13) that an

exact solution of equations (10.31) and (10.32 ) is

612 - 6 21 - L z  , p~~2 pL21 1112 1121
(10.314)

p12 +p
21 

= 2(k12 +-~ k114)L , = = 2k14Lz

With the help of (6.7), (6.8) and (10.33), we make the identifications

p12 
= (I1c~~ ÷I2

c~~)L , = 2Ac~~Lz . (10.35)

This leads us to choose
4 . r.

T k12+-~-k 114 = ~(I1c~~ +I2c~~) , k14 = Ac~~ . (10.36) 
r

A complete set of torsional coefficients is given by (1C.30) and (10.36)..
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Finally we consider the extension problem governed by equations (9 .22) .

Following Green et al. [5], the va1ue~ rnany of the coefficients can ~e

~pecified by ~i comparison of static ~~~~~~~ of (9.22) with homogenecus

defo rmations of the three-dimensionai r:d .  This yields the values

1 11 - :2 2  ~~~ 33
= ~ Ad “2 

= °22 , k
3 

= ~
E : (l0 .~7)

1 11 - - . 11 22
K~~ =~~~~~C33 ~ k

9 =~~~Ac
33

When the rod is isotropic , the results 2.37) reduce to those given in Green

et al [5]. Next, we consider the three-dimensional solution for displace-

ments and stresses given by

- * * * 1 2
u1 = Lxz , u

2
= M yz , u

3
=~~~Nz ,

t11 
= (c~~ L + c ~~~~+ c ~~ N)z , t12 

= 0

(10.38)
t22 

= (c~~L+c~~M+c~~N)z , t
13 

= c~~ Lx

11 22 ~~~~~~~ - 2~= -(c33L+c 33M+c :~N)z , t
23 

= c~~My ,

where L ,M,N are constants. The system of stresses in (10.38) satisfies the

equations of equilibr ium if

~~~~~~~~~~~~~~~~~~~~~~~~~~ = 0 , (10.39)

and can be maintained by suitable surface tractions . Recalling the expressions

(10.13), it follows that the corresponding results in the direct extensiona l

theory (9.22 ) are:

—Pr ~~~~~~~~~~~ ~-~~~v~~’ ~~~ 

—
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~~

*111 = 2~ ij = 2Lz 
‘ 

~22 
= 2

~22 = 2?4z *133 
= 2~u3/~

t = 2Nz

, K~2 M

11 ii 11
pL11 

= 1111 
= A (c11L+c22

M+c 33N)z ,

(10.140,
11 22 22

~ 22 
= 11

22 
= A (c

22
L+c

22
M+c 33N)z

pf
3
+A (c~~L+c~~M+c~~N) = 0

p11 
= k~0L+~ k17M -

, p22 = ~~ k1.~M+k11L .

With the help of (6.7), (6.8) and (10.38) we make the identification

p11 = I2c~~ L p22 = I~c~~M . (10.141)

Compar ison of (10.141) with the corresponding expressions in (10.140) leads us

to choose

E : k10 = I2c~~ , k11 = I1c~~ , k~7 
= 0 (10.142 )

for the values of k10,.. 1 ‘~ 17 • A complete set of values of coefficients for

the extension problem are contained in (10.16), (10.37) and (10 .142).

When the rod is isotropic and has circula r cross-sections of radi us R - -

we see from (10.30), (10.36), (10.37) and (10.142) that

k14 = k 17 = 0  ,

(10.143)
= - = 2

• k 14 2k1 Ic
7 

.

Previously (Green et al. 19714b), all constitutive coefficients in the case

of an isotropic rod of circular cross-section were determined except k10, k11 end

k 17 . The above mor e general -development , which is valid for orthotrop ic rods of

circu lar cross-section , upon specialization also provide s appropriate values for

the coefficients k10,k11 end. k
17 in the isotropic case.
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